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Both non-intrusive and intrusive stochastic approaches based on Polynomial Chaos Expansions are presented for the Finite
Integration Technique over generic polyhedral grids for three-dimensional magnetostatic linear problems. Such algorithms outperform
Monte Carlo methods, both in terms of accuracy and efficiency. A novel efficient algorithm for the intrusive approach is also provided,
by which the intrusive approach becomes much less computationaly expensive than the non-intrusive approach. Validation is carried

out by solving a magnetic circuit where the reluctivity is uncertain.
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I. INTRODUCTION

THIS PAPER introduces and compares non-intrusive and

intrusive stochastic approaches for the Finite Integration

Technique (FIT) based on Polynomial Chaos Expansion (PCE)

and applied to magnetostatics problems in which magnetic

reluctivity is random.

Corresponding formulations for electrokinetic and eddy cur-

rent problems were introduced by the authors in [1], [2].

All these formulations bring to the stochastic domain the

main properties of deterministic FIT discretizations, such as

that of combining exact balance equations with approximate

constitutive equations, over pairs of arbitrary polyhedral dual

grids. They also bring all beneficts of PCE with respect to

Monte Carlo (MC) methods, in terms both of accuracy and

efficiency.

In this paper a novel effective algorithm is also provided

for the intrusive approach, allowing to efficiently store and

solve the attained linear system of equations in such a way

that the intrusive approach becomes the premier stochastic FIT

approach for the chosen application. As a numerical validation,

a typical geometry of a magnetic circuit (Fig. 1) is considered.

In this problem the reluctivities of the four blocks composing

the magnetic circuit are modeled as uniformly distributed

random variables [3]. A total DC current is imposed on surface

σ of a rectangular coil ΩC and the aim is to statistically

characterize the magnetic flux through section Σ. Regions

Ωk, with k = 1, . . . , 4, are assumed to have statistically

independent reluctivities with uniformly distributed probability

density functions in the ranges reported in the caption of Fig.

1.

II. DETERMINISTIC FIT FORMULATION

Deterministic magnetostatic problems can be discretized

by FIT in various ways. In a vector potential formulation,

hereinafter considered, a pair of arbitrary polynomial dual grids

G, G̃ is constructed. Array b, with the fluxes of magnetic

induction through the faces, and array a with the circulations

of the vector potential along the edges, are defined over the
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Fig. 1. Geometry of the problem: a=50 mm, b=c=200 mm, d=10 mm, e=30
mm, f =70 mm, g=10 mm, ν1 = 0.1± 0.01mm/H, ν2 = 0.05± 0.005mm/H,
ν3 = 0.033 ± 0.0033mm/H, ν4 = 0.025 ± 0.0025mm/H.

primal grid G. Similarly array h̃, with the circulations of the

magnetic field along the edges, and array j̃, with the fluxes of

current density through the faces, are defined over dual grid G̃.

Discretizing Ampére’s law and the solenoidality of magnetic

induction, discretizing magnetic constitutive equations by the

energetic approach [4], and combining equations it ensues

C
T
MνCa = j̃, (1)

in which C is the face-edge incidence matrix of G and Mν is

the symmetric, positive definite discrete reluctivity matrix.

Even if underdetermined, this equation can be efficiently

solved by iterative methods, in particolar by the conjugate

gradient method.

III. STOCHASTIC FIT FORMULATION

Let the magnetic reluctivity ν be dependent on a small

number q of random variables, assumed to be statistically inde-

pendent and forming a vector ξ. Thus it is written ν = ν(r, ξ),
in which r is the position vector.

PCEs can be introduced for all discrete variables of FIT. In

this way, for instance, array a(ξ) of the circulations of the

vector potential is approximated in the form

a(ξ) =
∑

|α|≤p

aαψα(ξ), (2)



in which α is a multi-index of q elements, and ψα(ξ) are

polynomials of degrees less than p, forming an orthonormal

basis in the probability space of the random vector ξ [3], [5].

All the n projections aα with |α|≤ p can be grouped in

vector A = [aα]. In a similar way all the other FIT variables,

assumed random, can be represented by their PCEs J̃ = [j̃α],
H̃ = [h̃α], B = [bα].

A non-intrusive stochastic approach for FIT can be obtained

by solving deterministic FIT magnetostatic problem (1) for a

proper set of choices of random variables and by reconstructing

the projections of the FIT discrete variables, by either interpo-

lation, collocation or pseudo-spectral method [5].

Conversely, an intrusive stochastic approach is obtained

by substituting the PCEs of discrete variables into discrete

equations, multiplying all members of such equations by

polynomial ψα(ξ) and taking the expected values. In this way

exact stochastic Ampére’s law and exact stochastic solenoidal-

ity equations of magnetic induction are obtained, together

with approximate stochastic discrete constitutive relations. By

combining these equations, an underdetermined system of

equations follows

(1n ⊗C
T )Mν(1n ⊗C)A = J̃ , (3)

in which Mν is the symmetric, positive definite stochastic

reluctivity matrix, while ⊗ indicates tensor product.

IV. EFFICIENT SOLUTION OF STOCHASTIC FIT EQUATIONS

For non-intrusive stochastic FIT, the number of the required

deterministic simulations can be reduced by using standard

sparse grid techniques [5].

For intrustive stochastic FIT the conjugate gradient solver

for deterministic discrete magnetostatic problems can still be

used. However, in this way the computational complexity

becomes unbearable for large n. This is due both to the storage

requirement which is proportional to n2 and to the number of

operations at each iteration step which is also proportional to

n2. A huge reduction of computational complexity is achieved

exploiting the fact that in usual magnetostatics problems, re-

luctivity is given by a random variable νk(ξ) in each subregion

Ωk made of a distinct material, with k = 1, . . . , r. In this way,

the discrete constitutive matrix takes the form

Mν =

r∑

k=1

R
k
ν ⊗N

k
ν ,

in which R
k
ν = [rkν,αβ ] are symmetric positive definite ma-

trices of order n, α and β are multi-indexes, while N
k
ν are

constitutive matrices of deterministic problems. Then (3) can

be rewritten by the set of n linear systems of equations

r∑

k=1

C
T
N

k
νC

∑

|β|≤p

rkν,αβaβ = j̃α (4)

for all n multi-indices α, with |α|≤ p.

Using this formulation, the storage requirement for the

conjugate gradient algorithm is reduced to about that of one

deterministic discrete magnetostatics problem. Also, the num-

ber of operations at each iteration step is proportional to n.

Moreover, in all numerical tests it is observed that the number

of iterations for reaching a specified residual is about the same

for both deterministic and stochastic problems. In this way the

total number of operations to reach convergence is proportional

to n.

V. NUMERICAL RESULTS

The magnetic circuit shown in Fig. 1 is analyzed. The

magnetostatic problem is discretized by using a tetrahedral

primal grid of about 50 000 tetrahedra and by its barycentric

dual grid. For each of the four random variables 5-th order

PCEs are assumed. In the non-intrusive approach using the

pseudo-spectral method, each deterministic FIT equation (1)

is solved for values of the random variables in a Smolyak

sparse grid by the conjugate gradient method, until residual

is reduced by 106 in about 2 300 iterations and in 1 hour 15

minutes of computational time. In the intrusive approach (4)

is iteratively solved by the conjugate gradient method until

residual is reduced by 106, by 2 400 iterations, in about 16
minutes. The probability density functions (pdf) of the flux

ϕ of magnetic induction through section Σ are compared in

Fig. 2 and exhibit a 0.1% agreement. Monte Carlo analysis of

10 000 tries and about 30 hours of computational time is in

5% agreement with these results.
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Fig. 2. Probability density function of the flux ϕ through Σ, estimated by
both the intrusive, non-intrusive and MC methods.
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